Меню
Бесплатно
Главная  /  Рецепты  /  Откуда на Земле появилось золото? Формула золота химическая Описание химического элемента золото.

Откуда на Земле появилось золото? Формула золота химическая Описание химического элемента золото.

Здравствуйте! Золото - химический элемент, унесший много жизней. При строительстве Исаакиевского собора в Петербурге купола золотились с помощью золотой амальгамы. Архитектор Огюст Монферран принял меры, чтобы защитить рабочих от паров ртути, но понимал, что они обречены. Зато купола не придется золотить больше никогда.

Так и случилось: все 60 человек погибли от отравления, а собор с тех пор ни разу не золотили.

Кубический километр морской воды содержит 5 кг вожделенного элемента, а если уколоть палец и выдавить каплю крови, в ней будет 0,00025 мг золота. 10 мг содержится в человеческом скелете: если задаться целью выплавить кольцо из людей, понадобится всего 300 человек. Но это золото находится в окружающей среде в настолько рассеянной форме, что извлекать его оттуда невыгодно, а часто и невозможно.

Месторождения, подходящие для добычи золота, - первичные (постмагматические) и вторичные (россыпные).

Первичные месторождения

Химическим элементом Au богата магма - расплав внутри земного шара. Золото есть в верхних слоях мантии и частично в земной коре (впрочем, в ней содержится почти вся периодическая таблица). Магма выходит на поверхность планеты, остывает и превращается в твердую породу. Места, где она содержит столько драгоценного элемента, чтобы окупилась промышленная разработка, и есть коренные месторождения.

Природное золото находят в виде самородков - цельных зерен химически чистого вещества. Часто оно соединено с другими элементами (магма содержит почти все):

  • серебром;
  • медью;
  • металлами платиновой группы;
  • висмутом и другими.

Вторичные месторождения

Вторичные месторождения - итог разрушения первичных, так называемого выветривания, которое бывает:

  • физическим (причина - ветер, вода, температурные колебания);
  • химическим (химические реакции);
  • биологическим (бактерии и другие организмы).

Россыпь чистого золота выглядит как песок и порой относится водами на много километров от коренного месторождения.

История открытия элемента

В чистом виде золото попало в руки человека в VI веке до нашей эры. Массовые разработки африканских месторождений начались раньше - около 2000 года до н. э., но методик избавления от примесей не было, и золотые изделия того времени имеют низкую пробу.

Во времена поздней античности (начало нашей эры) по миру начала распространяться алхимия с ее стремлением превращать недрагоценные химические элементы в благородные. Она не добилась успеха, но современная цивилизация благодаря ей владеет многими чудесами - например, техникой добычи химическичистого золота из руды.

Латинское название золота - Aurum (читается как аурум) - «желтый». Оно принято как интернациональное. Символ солнца у алхимиков выглядел как круг с точкой внутри, а в современной химии оно обозначается сокращением Au.

Как получают

Основные способы получения золота в промышленных масштабах дополняют друг друга - например, шлих можно очистить от плотных примесей путем амальгамации.

Промывка

Промывка (шлихование) - древний метод добычи из вторичных месторождений. Песок отмывается благодаря плотности: менее плотные минералы вымываются водой, а шлих оседает.

Масштабная добыча золота автоматизирована: вместо людей работают промывочные устройства и экскаваторы. Однако принцип их действия за последние 2000 лет почти не изменился.

Шлих - не чистое золото. Существуют элементы плотнее - они оседают с песком на дне промывочной емкости. Для финальной очистки используются другие, в частности химические, способы.

Амальгамация

Этот метод тоже известен с древности, но описан в XVI веке. Он возможен благодаря свойству ртути образовывать сплавы (амальгамы) с другими металлами без дополнительного термического или химического воздействия. После избавления от фрагментов пустой породы химические элементы механически разделяются.


Мнение эксперта

Всеволод Козловский

6 лет в ювелирном деле. Знает все о пробах и может определить подделку за 12 секунд

Амальгамация применяется не везде: в ряде стран (с 1988 года - в России) запрещено использовать ртуть из-за смертельной опасности этого элемента для человека.

Цианирование

Способ извлечения драгоценного элемента из руды цианированием основывается на способности золота растворяться в синильной кислоте (цианистом водороде, HCN) и ее солях. Руда обрабатывается слабым (0,03–0,3 %) раствором цианида. Благородный металл реагирует раньше других химических элементов, а после химической реакции осаждается из раствора.

Физические и химические свойства

: в чистом виде не образует оксидов, не подвержено коррозии. Еще у него:

  • высокая плотность - 19,32 г/см³;
  • среднеплавкость (температура плавления в диапазоне 600–1600 °С - 1064,43 °С);
  • низкая твёрдость - 2,5 пунктов по шкале Мооса;
  • высокая ковкость (благодаря ей создается позолота);
  • высокая пластичность, тягучесть.

Место золота в периодической таблице Менделеева

Элемент располагается в XI группе (подгруппа меди), VI периоде периодической таблицы химических элементов.

Атомный номер (зарядовое число) золота - 79. Это количество протонов в ядре атома, равное количеству электронов, вращающихся вокруг ядра. Атомная масса - суммарная масса протонов и нейтронов (ядра атома) - у золота равна 196,9665 а.е.м. (атомных единиц массы). Природное золото существует в виде химически устойчивого изотопа 197 Au. Все остальные нестабильны и возможны только в условиях ядерного реактора.

Формула

Своей химической формулы золото не имеет, поскольку существует в виде одноатомных молекул. Электронная конфигурация атома Au записывается как 4f14 5d10 6s1 и обозначает точное распределение электронов по орбиталям.

Взаимодействие с кислотами

В силу своей инертности (не абсолютной, но значительной) золото не растворяется в кислотах. Это позволяет использовать их для аффинажа (химической очистки элемента от примесей): сплав обрабатывается кислотой, например азотной, и так избавляется от лигатуры.

Но есть исключения. Чистое золото растворяют кислоты:

  • селеновая;
  • синильная и ее соли (цианиды);
  • азотная в смеси с соляной (царская водка).

Степени окисления и связь с галогенами

В естественных условиях Au не окисляется под воздействием кислорода - это одно из свойств, делающих элемент драгоценным. При нагревании золото взаимодействует с галогенами (элементами XVII группы): йодом, фтором, бромом и хлором, образуя соответственно йодид, фторид, бромид и хлорид.

Стандартные степени окисления - 1 и 3. В лабораторных условиях выведен фторид со степенью окисления +5.

Меры чистоты золота

Государства контролируют оборот драгметалла. Век назад почти в каждой стране работала своя система пробирования, но сейчас большинство приведено к общему знаменателю.

Британская каратная система

В каратной системе (США, Канада, Швейцария) за 100 % принято число 24. Клеймо «18 K» говорит о том, что украшение состоит на 75 % из драгоценного металла, а на 25 % из чего-то ещё - например меди и палладия.

Метрическая система

В России, СНГ, Германии число на клейме - это количество промилле (тысячных долей) золота в сплаве. 500 ‰ - проба 500, 375 ‰ -375. Не существует только пробы 1000 - вместо нее 999,9. Она содержит микроскопическое количество примесей и условно считается чистой.

Золотниковая система

Золотниковая система проб действовала в Российской империи, РСФСР и СССР в 1798–1927 годах. Она основана на русском фунте, равном 96 золотникам, аналогична каратной математически, но делит целое не на 24, а на 96 долей.

Таблица соответствия проб

Посмотрим на три системы в сравнении. Существует также лотовая проба - она по сути повторяет каратную, но берет за сто процентов 16 единиц (лот). Лотовая проба использовалась для пробирования серебра в Европе до введения метрической системы и не имеет отношения к золоту.

Сплавы с другими металлами

В промышленности применяются , серебром, платиной, палладием, никелем и другими металлами. Лигатура меняет свойства сплава. Платина и палладий придают ему белый цвет, цинк и кадмий понижают температуру плавления (но цинк делает сплав хрупким, а кадмий - нет), медь окрашивает в красный и делает тверже.

Применение

Без золота нельзя представить себе:

  • ювелирное дело;
  • информационные технологии;
  • нефтехимическое производство;
  • производство измерительных приборов;
  • элетронику и микроэлектронику;
  • фармакологию;
  • ядерные исследования.

До сих пор золото не утратило и первоначального предназначения - оно используется для сбережения и приумножения средств.

Как отличить подделку

Чтобы навариться, выдав изделия из неблагородных сплавов за ценные, мошенники прибегают к уловкам: обжигают серебро на огне, соединяют медь с цинком и оловом. Обращайте внимание на:

  • Клеймо - оно должно соответствовать стандарту.
  • Цену - если она неправдоподобно низка, это тревожный знак.
  • Страну-производитель - проверьте украшение лишний раз, если это Турция, Китай или ОАЭ.

Встречаются советы попробовать вещь на зуб при продавце или испытать химически, капнув на нее йодом. Это действенные для определения подлинности высоких проб способы, но они не всегда приемлемы в обществе. Если продавец вызывает у вас сомнения настолько, что вы готовы кусать его товар, стоит отказаться от покупки.

Заключение

Не кладите золото в ртуть и не проливайте на него синильную кислоту - так оно прослужит дольше. А еще подписывайтесь на мои статьи и делитесь ими с друзьями!

Истинная, эмпирическая, или брутто-формула: Au

Молекулярная масса: 196,967

Зо́лото - элемент 11 группы (по устаревшей классификации - побочной подгруппы первой группы), шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum). Простое вещество золото - благородный металл жёлтого цвета.

История

Происхождение названия

Праславянское «*zolto» («золото») родственно лит. geltonas «жёлтый», латыш. zelts «золото»; с другим вокализмом: готск. gulþ, нем. gold, англ. gold; далее санскр. हिरण्य (híraṇya IAST), авест. zaranya, осет. zærījnæ «золото», также санскр. हरि (hari IAST) «жёлтый, золотистый, зеленоватый», от праиндоевропейского корня *ǵʰel- «жёлтый, зелёный, яркий». Отсюда же названия цветов: «жёлтый», «зелёный». Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) - утренней зарёй.

Физические свойства

Чистое золото - мягкий металл жёлтого цвета. Красноватый оттенок некоторым изделиям из золота, например, монетам, придают примеси других металлов, в частности, меди. В тонких плёнках золото просвечивает зелёным. Золото обладает высокой теплопроводностью и низким электрическим сопротивлением. Золото - очень тяжёлый металл: плотность чистого золота равна 19,32 г/см³ (шар из чистого золота диаметром 46,237 мм имеет массу 1 кг). Среди металлов по плотности занимает седьмое место после осмия, иридия, платины, рения, нептуния и плутония. Сопоставимую с золотом плотность имеет вольфрам (19,25). Высокая плотность золота облегчает его добычу, отчего даже простые технологические процессы - например, промывка на шлюзах, - могут обеспечить высокую степень извлечения золота из промываемой породы. Золото - очень мягкий металл: твёрдость по шкале Мооса ~2,5, по Бринеллю 220-250 МПа (сравнима с твёрдостью ногтя). Золото также высокопластично: оно может быть проковано в листки толщиной до ~0,1 мкм (100 нм) (сусальное золото); при такой толщине золото полупрозрачно и в отражённом свете имеет жёлтый цвет, в проходящем - окрашено в дополнительный к жёлтому синевато-зеленоватый. Золото может быть вытянуто в проволоку с линейной плотностью до 2 мг/м. Температура плавления золота 1064,18 °C (1337,33 К), кипит при 2856 °C (3129 К). Плотность жидкого золота меньше, чем твёрдого, и составляет 17 г/см 3 при температуре плавления. Жидкое золото довольно летучее, оно активно испаряется задолго до температуры кипения. Линейный коэффициент теплового расширения - 14,2·10-6 К−1 (при 25 °C). Теплопроводность - 320 Вт/м·К, удельная теплоёмкость - 129 Дж/(кг·К), удельное электрическое сопротивление - 0,023 Ом·мм 2 /м. Электроотрицательность по Полингу - 2,4. Энергия сродства к электрону равна 2,8 эВ; атомный радиус 0,144 нм, ионные радиусы: Аu + 0,151 нм (координационное число 6), Аu 3+ 0,082 нм (4), 0,099 нм (6).Причиной того, что цвет золота отличается от цвета большинства металлов, является малость энергетической щели между полузаполненной 6s-орбиталью и заполненными 5d-орбиталями. В результате золото поглощает фотоны в синей, коротковолновой части видимого спектра, начиная с примерно 500 нм, но отражает более длинноволновые фотоны с меньшей энергией, которые не способны перевести 5d-электрон на вакансию в 6s-орбитали (см. рис.). Поэтому золото при освещении белым светом выглядит жёлтым. Сужение щели между 6s- и 5d-уровнями вызвано релятивистскими эффектами - в сильном кулоновском поле вблизи ядра золота орбитальные электроны движутся со скоростями, составляющими заметную часть скорости света, причём на s-электронах, у которых максимум плотности орбитали находится в центре атома, эффект релятивистского сжатия орбитали сказывается сильнее, чем на p-, d-, f-электронах, чья плотность электронного облака в окрестностях ядра стремится к нулю. Кроме того, релятивистское сжатие s-орбиталей увеличивает экранировку ядра и ослабление притяжения к ядру электронов с более высокими орбитальными моментами (непрямой релятивистский эффект). В целом, 6s-уровень снижается, а 5d-уровни растут.

Химические свойства

Золото - один из самых инертных металлов, стоящее в ряду напряжений правее всех других металлов. При нормальных условиях оно не взаимодействует с большинством и не образует оксидов, поэтому его относят к благородным металлам, в отличие от обычных металлов, разрушающихся под действием и . В XIV веке была открыта способность царской водки растворять золото, что опровергло мнение о его химической инертности. Существуют соединения золота со степенью окисления −1, называемые ауридами. Например, CsAu (аурид цезия), Na 3 Au (аурид натрия). Из чистых кислот золото растворяется только в концентрированной селеновой кислоте при 200 °C:
2Au + 6H 2 SeO 4 → Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O
Концентрированная HClO 4 реагирует с золотом и при комнатной температуре, при этом образуя различные нестойкие оксиды хлора. Жёлтый раствор растворимого в воде перхлората золота (III).
2Au + 8HClO 4 → Cl 2 + 2Au(ClO 4) 3 + 2O 2 + 4H 2 O
Реакция обусловлена сильной окислительной способностью Cl 2 O 7 .
Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:
4Au + 8CN - + 2H 2 O + O 2 → 4 - + 4OH -
Цианоаураты легко восстанавливаются до чистого золота:
2Na + Zn → Na 2 + 2Au
В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °C с образованием хлорида золота(III), то в концентрированном водном растворе соляной и азотной кислот («царская водка») золото растворяется с образованием хлораурат-иона уже при комнатной температуре:
2Au + 3Cl 2 + 2Cl - → 2 -
Кроме того, золото растворяется в хлорной воде. Золото легко реагирует с жидким бромом и его растворами в воде и органических , образуя трибромид AuBr 3 .
С фтором золото реагирует в интервале температур 300−400 °C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются. Золото также растворяется в ртути, образуя легкоплавкий сплав (амальгаму), содержащий интерметаллиды золото-ртуть. Известны золотоорганические соединения - например, этилдибромид золота или ауротиоглюкоза.

Физиологическое воздействие

Некоторые соединения золота токсичны, накапливаются в почках, печени, селезёнке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении. Органические соединения золота (препараты кризанол и ауранофин) применяются в медицине при лечении аутоиммунных заболеваний, в частности, ревматоидного артрита.

Происхождение

Зарядовое число 79 золота делает его одним из высших по количеству протонов элементов, которые встречаются в природе. Ранее предполагалось, что золото образовывалось при нуклеосинтезе сверхновых звёзд, однако по новой теории предполагается, что золото и другие элементы тяжелее железа образовались в результате разрушения нейтронных звёзд. Спутниковые спектрометры в состоянии обнаружить образующееся золото лишь косвенно, «у нас нет прямых спектроскопических доказательств, что такие элементы действительно образуются». По этой теории в результате взрыва нейтронной звезды содержащая металлы пыль (в том числе тяжёлые металлы, например, золото) выбрасывается в космическое пространство, в котором оно впоследствии конденсируется, так произошло в Солнечной системе и на Земле. Поскольку сразу после своего возникновения Земля была в расплавленном состоянии, почти всё золото в настоящее время на Земле находится в ядре. Большинство золота, которое сегодня присутствует в земной коре и мантии, было доставлено на Землю астероидами во время поздней тяжёлой бомбардировки. На Земле золото находится в рудах в породах, образованных начиная с докембрийского периода.

Геохимия

Содержание золота в земной коре очень низкое - 4,3·10 -10 % по массе (0,5-5 мг/т), но месторождения и участки, резко обогащённые металлом, весьма многочисленны. Золото содержится и в воде . Один литр и морской, и речной воды содержит менее 5·10 -9 граммов Au, что примерно соответствует 5 килограммам золота в 1 кубическом километре воды. Золоторудные месторождения возникают преимущественно в районах развития гранитоидов, небольшое их количество ассоциирует с основными и ультраосновными породами. Золото образует промышленные концентрации в постмагматических, главным образом гидротермальных, месторождениях. В экзогенных условиях золото является очень устойчивым элементом и легко накапливается в россыпях. Однако субмикроскопическое золото, входящее в состав сульфидов, при окислении последних приобретает способность мигрировать в зоне окисления. В результате золото иногда накапливается в зоне вторичного сульфидного обогащения, но максимальные его концентрации связаны с накоплением в зоне окисления, где оно ассоциирует с гидроокислами железа и марганца. Миграция золота в зоне окисления сульфидных месторождений происходит в виде бромистого и йодистого соединений в ионной форме. Некоторыми учёными допускается растворение и перенос золота сульфатом окиси железа или в виде суспензионной взвеси. В природе известны 15 золотосодержащих минералов: самородное золото с примесями серебра, меди и др., электрум Au и 25 - 45 % Ag; порпесит AuPd; медистое золото, бисмутоаурит (Au, Bi); родистое золото, иридистое золото, платинистое золото. Встречается также вместе с осмистым иридием (ауросмирид) Остальные минералы представлены теллуридами золота: калаверит AuTe 2 , креннерит AuTe 2 , сильванит AuAgTe 4 , петцит Ag 3 AuTe 2 , мутманит (Ag, Au)Te, монтбрейит Au 2 Te 3 , нагиагит Pb 5 AuSbTe 3 S 6 . Для золота характерна самородная форма. Среди других его форм стоит отметить электрум, сплав золота с серебром, который обладает зеленоватым оттенком и относительно легко разрушается при переносе водой. В горных породах золото обычно рассеяно на атомарном уровне. В месторождениях оно зачастую заключено в сульфиды и арсениды. Различаются вторичные месторождения золота - россыпи, в которые оно попадает в результате разрушения первичных рудных месторождений, и месторождения с комплексными рудами - в которых золото извлекается в качестве попутного компонента.

Добыча

Люди добывают золото с незапамятных времён. С золотом человечество столкнулось уже в V тыс. до н. э. в эпоху неолита благодаря его распространению в самородном состоянии. По предположению археологов, начало системной добычи было положено на Ближнем Востоке, откуда золотые украшения поставлялись, в частности, в Египет. Именно в Египте в гробнице королевы Зер и одной из королев Пу-аби Ур в Шумерской цивилизации были найдены первые золотые украшения, датируемые III тыс. до н. э. В России до елизаветинских времён золото не добывалось. Оно ввозилось из-за границы в обмен на товары и взималось в виде ввозных пошлин. Первое открытие запасов золота было сделано в 1732 году в Архангельской губернии, где вблизи одной деревни была обнаружена золотая жила. Её начали разрабатывать в 1745 году. Рудник с перерывами действовал до 1794 года и дал всего около 65 кг золота. Началом золотодобычи в России считают 21 мая (1 июня) 1745 г., когда Ерофей Марков, нашедший золото на Урале, объявил о своем открытии в Канцелярии Главного правления заводов в Екатеринбурге.
За всю историю человечеством добыто около 161 тысячи тонн золота, рыночная стоимость которого 8-9 триллионов долларов (оценка на 2011 год). Эти запасы распределены следующим образом (оценка на 2003 год):

  • государственные ЦБ и международные финансовые организации - около 30 тыс. тонн;
  • в ювелирных изделиях - 79 тыс. тонн;
  • изделия электронной промышленности и стоматологии - 17 тыс. тонн;
  • инвестиционные накопления - 24 тыс. тонн.
В России существует 37 золотодобывающих компаний. Лидером добычи золота в России является компания Полюс Золото, на которую приходится около 23 % рынка. Около 95 % золота в России добывается в 15 регионах (Амурская область, Республика Бурятия, Забайкальский край, Иркутская область, Камчатский край, Красноярский край, Магаданская область, Республика Саха (Якутия), Свердловская область, Республика Тыва, Хабаровский край, Республика Хакасия, Челябинская область, Чукотский автономный округ). Еще в 10 регионах добыча золота меньше тонны и нестабильная. Большая часть золота добывается из коренных месторождений, но развита также россыпная золотодобыча. Наибольшее количество золота добывается в Чукотском автономном округе, Красноярском крае и Амурской области.
В России, среди месторождений золота большую роль играют россыпи, и по добыче россыпного золота Россия занимает 1 место в мире. Большая его часть добывается в 7 регионах: Амурская область, Забайкальский край, Иркутская область, Магаданская область, Республика Саха (Якутия), Хабаровский край, Чукотский автономный округ.
В 2011 году в мире было добыто 2809,5 т золота, из них в России - 185,3 т (6,6 % мировой добычи).
В 2012 г. в России было добыто 226 тонн золота, на 15 тонн (на 7 %) больше, чем в 2011 г.
В 2013 г. в России было добыто 248,8 тонны золота, это на 22.8 тонны (на 9 %) больше, чем в 2012 г. Россия заняла третье место по объёму добытого золота с показателем в 248,8 тонны. Первое место занял Китай, где объём добычи золота составил 403 тонны. Австралия заняла второе место и добыла 268,1 тонны золота.
В 2014 г. в России было добыто 272 тонны золота, это на 23,2 тонны (на 9%) больше, чем в 2013 г. Россия заняла второе место по объёму добычи золота. Первое место в списке занял Китай, где объём добычи драгоценного металла увеличился в годовом выражении на 6 % в сравнении с 2013 г. и составил 465,7 тонны. Третье место занимает Австралия с добычей золота в 269,7 тонны, что на 1% выше показателя 2013 года.
Объём добычи золота в мире в 2014 году увеличился на 2% - до 3,109 тысячи тонн золота. При этом общемировое предложение на рынке практически не изменилось и составило 4,273 тысячи тонн. Производство первичного золота выросло на 2% - до 3,109 тысячи тонн, переработка вторичного золота снизилась на 11,1% - до 1,122 тысячи тонн. Спрос на золото в мире сократился на 18,7% - до 4,041 тысячи тонн.

Получение

Для получения золота используются его основные физические и химические свойства: присутствие в природе в самородном состоянии, способность реагировать лишь с немногими веществами (ртуть, цианиды). С развитием современных технологий более популярными становятся химические способы. В 1947 году американские физики Ингрем, Гесс и Гайдн проводили эксперимент по измерению эффективного сечения поглощения нейтронов ядрами ртути. В качестве побочного эффекта эксперимента было получено около 35 мкг золота. Таким образом, была осуществлена многовековая мечта алхимиков - трансмутация ртути в золото. Однако экономического значения такое производство золота не имеет, так как обходится во много раз дороже добычи золота из самых бедных руд.

Применение

Имеющееся в настоящее время в мире золото распределено так: около 10 % - в промышленных изделиях, остальное делится приблизительно поровну между централизованными запасами (в основном, в виде стандартных слитков химически чистого золота), собственностью частных лиц в виде слитков и ювелирными изделиями.

Запасы

В России

Запасы золота в государственном резерве России в декабре 2008 г. составили 495,9 тонн (2,2 % от всех государств мира). Доля золота в общем объёме золотовалютных резервов России в марте 2006 составила 3,8 %. По состоянию на начало 2011 года Россия занимает 8 место в мире по объёму золота, находящегося в государственном резерве. В августе 2013 года Россия увеличила золотой запас до 1015 т. В 2014 и 2016 годах Россия продолжила наращивать запасы драгоценного метала, которые на середину 2016 составили 1444,5 т.

Система проб

Во всех странах количество золота в сплавах контролируется государством. В России общепринятыми считаются пять проб золотых ювелирных сплавов: золото 375 пробы, 500, 585, 750, 958.

  • 375 проба. Основные компоненты - серебро и медь, золота - 38 %. Отрицательное свойство - тускнеет на воздухе (в основном из-за образования сульфида серебра Ag 2 S). Золото 375 пробы имеет цветовую гамму от жёлтого до красного.
  • 500 проба. Основные компоненты - серебро и медь, золота - 50,5 %. Отрицательные свойства - низкая литейность, зависимость цвета от содержания серебра.
  • 585 проба. Основные компоненты - серебро, медь, палладий, никель, золота - 59 %. Проба достаточно высока, это обусловлено многочисленными положительными качествами сплава: твёрдость, прочность, устойчивость на воздухе. Широко применяется для изготовления ювелирных украшений.
  • 750 проба. Основные компоненты - серебро, платина, медь, палладий, никель, золота - 75,5 %. Положительные свойства: подверженность полировке, твёрдость, прочность, хорошо обрабатывается. Цветовая гамма - от зелёного через ярко-жёлтый до розового и красного. Используется в ювелирном искусстве, особенно для филигранных работ.
  • 958 проба. Содержит до 96,3 % чистого золота. Редко используется, так как сплав этой пробы является весьма мягким материалом, который не держит полировку и характеризуется ненасыщенностью цвета.
  • 999 проба. Чистое золото.

ЗОЛОТО (химический элемент) ЗОЛОТО (химический элемент)

ЗО́ЛОТО (лат. Aurum) , Au (читается «аурум»), химический элемент с атомным номером 79, атомная масса 196,9665. Известно с глубокой древности. В природе один стабильный изотоп 197 Au. Конфигурация внешней и предвнешней электронных оболочек 5s 2 p 6 d 10 6s 1 . Расположено в IВ группе и 6-м периоде периодической системы, относится к благородным металлам. Степени окисления 0, +1, +3, +5 (валентности от I, III, V).
Металлический радиус атома золота 0,137 нм, радиус иона Au + - 0,151 нм для координационного числа 6, иона Au 3+ - 0,084 нм и 0,099 нм для координационных чисел 4 и 6. Энергии ионизации Au 0 - Au + - Au 2+ - Au 3+ соответственно равны 9,23, 20,5 и 30,47 эВ. Электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,4.
Нахождение в природе
Содержание в земной коре 4,3·10 –7 % по массе, в воде морей и океанов менее 5·10 –6 % мг/л. Относится к рассеянным элементам. Известно более 20 минералов, из которых главный - самородное золото (электрум, медистое, палладиевое, висмутовое золото). Самородки большого размера встречаются крайне редко и, как правило, имеют именные названия. Химические соединения золота в природе редки, в основном это теллуриды - калеверит AuTe 2 , креннерит (Au,Ag)Te 2 и другие. Золото может присутствовать в виде примеси в различных сульфидных минералах: пирите (см. ПИРИТ) , халькопирите (см. ХАЛЬКОПИРИТ) , сфалерите (см. СФАЛЕРИТ) и других.
Современные методы химического анализа позволяют обнаружить присутствие ничтожных количеств Au в организмах растений и животных, в винах и коньяках, в минеральных водах и в морской воде.
История открытия
Золото было известно человечеству с древнейших времен. Возможно, оно явилось первым металлом, с которым познакомился человек. Имеются данные о добыче золота и изготовлении изделий из него в Древнем Египте (4100-3900 годы до н. э.), Индии и Индокитае (2000-1500 годы до н. э.), где из него изготавливали деньги, дорогие украшения, произведений культа и искусства.
Получение
Источники золота при его промышленном получении - руды и пески золотых россыпных и коренных месторождений, содержание золота в которых составляет 5-15 г на тонну исходного материала, а также промежуточные продукты (0,5-3 г/т) свинцово-цинкового, медного, уранового и некоторых других производств.
Процесс получения золота из россыпей основан на разнице плотностей золота и песка. С помощью мощных струй воды измельченную золотоносную породу переводят во взвешенное в воде состояние. Полученная пульпа стекает в драге по наклонной плоскости. При этом тяжелые частицы золота оседают, а песчинки уносятся водой.
Другим способом золото извлекают из руды, обрабатывая ее жидкой ртутью и получая жидкий сплав - амальгаму. Далее амальгаму нагревают, ртуть испаряется, а золото остается. Применяют и цианидный способ извлечения золота из руд. В этом случае золотоносную руду обрабатывают раствором цианида натрия NaCN. В присутствии кислорода воздуха золото переходит в раствор:
4Au + O 2 + 8NaCN + 2H 2 O = 4Na + 4NaOH
Далее полученный раствор комплекса золота обрабатывают цинковой пылью:
2Na + Zn = Na 2 + NO +H 2 O
с последующим избирательным осаждением золота из раствора, например, с помощью FeSO 4 .
Физические и химические свойства
Золото - желтый металл с кубической гранецентрированной решеткой (a = 0,40786 нм). Температура плавления 1064,4 °C, температура кипения 2880 °C, плотность 19,32 кг/дм 3 . Обладает исключительной пластичностью, теплопроводностью и электропроводимостью. Шарик золота диаметром в 1 мм можно расплющить в тончайший лист, просвечивающий голубовато-зеленым цветом, площадью 50 м 2 . Толщина самых тонких листочков золота 0,1 мкм. Из золота можно вытянуть тончайшие нити.
Золото устойчиво на воздухе и в воде. С кислородом (см. КИСЛОРОД) , азотом (см. АЗОТ) , водородом (см. ВОДОРОД) , фосфором (см. ФОСФОР) , сурьмой (см. СУРЬМА) и углеродом (см. УГЛЕРОД) непосредственно не взаимодействует. Антимонид AuSb 2 и фосфид золота Au 2 P 3 получают косвенными путями.
В ряду стандартных потенциалов золото расположено правее водорода, поэтому с неокисляющими кислотами в реакции не вступает. Растворяется в горячей селеновой кислоте:
2Au + 6H 2 SeO 4 = Au 2 (SeO 4) 3 + 3H 2 SeO 3 + 3H 2 O,
в концентрированной соляной кислоте при пропускании через раствор хлора:
2Au + 3Cl 2 + 2HCl = 2H
При аккуратном упаривании получаемого раствора можно получить желтые кристаллы золотохлористоводородной кислоты HAuCl 4 ·3H 2 O.
С галогенами (см. ГАЛОГЕНЫ) без нагревания в отсутствие влаги золото не реагирует. При нагревании порошка золота с галогенами или с дифторидом ксенона образуются галогениды золота:
2Au + 3Cl 2 = 2AuCl 3 ,
2Au + 3XeF 2 = 2AuF 3 + 3Xe
В воде растворимы только AuCl 3 и AuBr 3 , состоящие из димерных молекул:
Термическим разложением гексафторауратов (V), например, O 2 + – получены фториды золота AuF 5 и AuF 7 . Их также можно получить, окисляя золото или его трифторид с помощью KrF 2 и XeF 6 .
Моногалогениды золота AuCl, AuBr и AuI образуются при нагревании в вакууме соответствующих высших галогенидов. При нагревании они или разлагаются:
2AuCl = 2Au + Cl 2
или диспропорционируют:
3AuBr = AuBr 3 + 2Au.
Соединения золота неустойчивы и в водных растворах гидролизуются, легко восстанавливаясь до металла.
Гидроксид золота (III) Au(OH) 3 образуется при добавлении щелочи или Mg(OH) 2 к раствору H:
H + 2Mg(OH) 2 = Au(OH) 3 Ї + 2MgCl 2 + H 2 O
При нагревании Au(OH) 3 легко дегидратируется, образуя оксид золота (III):
2Au(OH) 3 = Au 2 O 3 + 3H 2 O
Гидроксид золота (III) проявляет амфотерные свойства, реагируя с растворами кислот и щелочей:
Au(OH) 3 + 4HCl = H + 3H 2 O,
Au(OH) 3 + NaOH = Na
Другие кислородные соединения золота неустойчивы и легко образуют взрывчатые смеси. Соединение оксида золота (III) с аммиаком Au 2 O 3 ·4NH 3 - «гремучее золото», взрывается при нагревании.
При восстановлении золота из разбавленных растворов его солей, а также при электрическом распылении золота в воде образуется стойкий коллоидный раствор золота:
2AuCl 3 + 3SnCl 2 = 3SnCl 4 +2Au
Окраска коллоидных растворов золота зависит от степени дисперсности частиц золота, а интенсивность от их концентрации. Частицы золота в растворе всегда отрицательно заряжены.
Применение
Золото и его сплавы используют для изготовления ювелирных изделий, монет, медалей, зубных протезов, деталей химической аппаратуры, электрических контактов и проводов, изделий микроэлектроники, для плакирования труб в химической промышленности, в производстве припоев, катализаторов, часов, для окрашивания стекол, изготовления перьев для авторучек, нанесения покрытий на металлические поверхности. Обычно золото используют в сплаве с серебром или палладием (белое золото; также называют сплав золота с платиной и другими металлами). Содержание золота в сплаве обозначают государственным клеймом. Золото 583 пробы является сплавом с 58,3% золота по массе. См также Золото (в экономике) (см. ЗОЛОТО (в экономике)) .
Физиологическое действие
Некоторые соединения золота токсичны, накапливаются в почках, печени, селезенке и гипоталамусе, что может привести к органическим заболеваниям и дерматитам, стоматитам, тромбоцитопении.

Энциклопедический словарь . 2009 .

Смотреть что такое "ЗОЛОТО (химический элемент)" в других словарях:

    Золото - получить на Академике рабочий купон на скидку мебельон или выгодно золото купить с бесплатной доставкой на распродаже в мебельон

    Химический элемент совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в… … Википедия

    ПАЛЛАДИЙ (лат. Palladium, по названию одного из крупнейших астероидов Паллада), Pd (читается «палладий»), химический элемент с атомным номером 46, атомная масса 106,42. Природный палладий состоит из шести стабильных изотопов 102Pd (1,00%), 104Pd… … Энциклопедический словарь

    - (фр. Chlore, нем. Chlor, англ. Chlorine) элемент из группы галоидов; знак его Cl; атомный вес 35,451 [Пo расчету Кларке данных Стаса.] при O = 16; частица Cl 2, которой хорошо отвечают найденные Бунзеном и Реньо плотности его по отношению к… …

    - (хим.; Phosphore франц., Phosphor нем., Phosphorus англ. и лат., откуда обозначение P, иногда Ph; атомный вес 31 [В новейшее время атомный вес Ф. найден (van der Plaats) такой: 30,93 путем восстановления определенным весом Ф. металлического… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag 2S… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Argentum, argent, Silber), хим. знак Ag. С. принадлежит к числу металлов, известных человеку еще в глубокой древности. В природе оно встречается как в самородном состоянии, так и в виде соединений с другими телами (с серой, напр. Ag2S серебряный … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Существует мнение, что золото само по себе - один из самых малополезных металлов. Так ли это? Эрудированный инженер начала XX в. ответил бы: «Бесспорно, так». Инженеры середины 70-х годов не столь категоричны. Техника прошлого обходилась без золота не только потому, что оно слишком дорого. Не было особой нужды в свойствах, присущих только золоту. Впрочем, утверждение, что эти свойства не использовались совсем, будет неверным. Купола церквей золотили из-за химической стойкости и простоты механической обработки золота. Эти его свойства использует и современная техника.

Золото и его сплавы

Золото - очень мягкий металл, его легко расплющить, превратить в тончайшие пластинки и листы. В некоторых случаях это очень удобно. Несмотря на это, большинство золотых изделий - литые, хотя температура плавления золота 1063° С. Еще мастерам древности пришлось убедиться, что придать золоту все нужные формы способом литья не удается. При изготовлении, например, обычного кувшина ручку приходилось отливать отдельно, а потом припаивать.
Историки и археологи установили, что пайка металлов известна людям уже несколько тысячелетий. Только паяли древние не оловом, а золотом, точнее - сплавом золота и серебра. Современной технике тоже иногда приходится пользоваться золотым припоем.
По электропроводности золото занимает третье место после серебра и меди.
При контакте под давлением золота с медью в восстановительной среде или в вакууме процесс диффузии - проникновения молекул одного металла в другой - идет довольно быстро. Детали из этих металлов соединяются между собой при температуре, значительно более низкой, чем температура плавления меди, золота или любого их сплава. Такие соединения называют золотыми печатями. Их используют при изготовлении некоторых типов радиоламп, хотя прочность золотых печатей несколько ниже прочности соединений, полученных путем сплавления. Из сплавов золота с серебром или медью делают волоски гальванометров и других точных приборов, а также миниатюрные электрические контакты, предназначенные для приема огромного числа замыканий и размыканий. При этом, что особенно важно, эти конструктивно несложные детали должны работать без прилипания контактов, должны реагировать на каждый импульс.
В сплавах, обеспечивающих наименьшее прилипание, золоту принадлежит особая роль. Безотказно работают сплавы золота с палладием (30%) и платиной (10%), палладием (35%) и вольфрамом (5%), цирконием (3%), марганцем (1%). В специальной литературе описаны сплавы с подобными свойствами, способные конкурировать с золотыми. Это, например, сплав платины с 18% иридия , но он дороже любого из перечисленных сплавов. Да и все лучшие контактные сплавы очень дороги, однако без них не может обойтись современная космическая техника. Кроме того, их применяют в наиболее важных аппаратах не космического назначения, от которых требуется особая надежность.
Золото и его сплавы стали конструкционным материалом не только для миниатюрных радиоламп и контактов, но и для гигантских ускорителей элементарных частиц. Ускоритель, как правило,-это огромная кольцевая камера - труба, свернутая в баранку. Чем большее разрежение удается создать в такой трубе, тем дольше могут жить в ней элементарные частицы. Трубы изготовляют из нержавеющей стали, выплавленной в вакууме. Внутреннюю поверхность трубы полируют до зеркального блеска - при такой поверхности легче поддерживать глубокое разрежение.
Давление в ускорителе элементарных частиц не превышает миллиардных долей атмосферного. Излишне объяснять, насколько сложно поддержать в гигантской «баранке» такой вакуум, тем более что в баранке имеются отводы, рукава, стыки.
Уплотняющие кольца и шайбы для ускорителей делают из мягкого пластичного золота. Золотом паяют стыки камеры.
В некоторых случаях пластичность золота оказывается незаменимым качеством, а в других, наоборот, создает затруднения. Одно из старейших применений золота - изготовление зубных протезов. Конечно, мягкому металлу легче придать нужную форму, но зубы из чистого золота сравнительно быстро изнашиваются. Поэтому зубные протезы и ювелирные изделия изготовляют не из чистого золота, а из его сплавов с серебром или медью. В зависимости от содержания серебра такие сплавы имеют неодинаковый цвет: при 20-40% серебра получается зеленовато-желтый металл, при 50% - бледно-желтый.
Сплавы дополнительно упрочняют термической обработкой, и при этом золото ведет себя очень своеобразно. Хорошо известен процесс закалки стали: металл нагревают до определенной температуры и затем быстро охлаждают. Такая обработка придает стали твердость. Что-бы снять закалку, металл повторно нагревают и охлаждают медленно - это отжиг. Сплавы золота с медью и серебром, наоборот, приобретают мягкость и пластичность при быстром охлаждении, а при медленном отжиге - твердость и хрупкость.

Позолота

Золото - один из самых тяжелых металлов , только осмий , иридий и платина превосходят его по плотности. Если бы носилки фараонов были действительно золотыми, они были бы в два с половиной раза тяжелее железных. Носилки были деревянными, покрытыми тончайшей золотой фольгой.
Любопытная деталь: плотность вольфрама почти совпадает с плотностью золота. В древности не знали вольфрама, но если допустить, что золотая корона сиракузского царя Гиерона была бы подделана не серебром, а вольфрамом, то великий Архимед, пользуясь выведенным им законом, не смог бы обнаружить подделки и уличить мошенника-мастера.
Золотые покрытия известны с глубокой древности. Тончайшие листы золота приклеивали к дереву, меди, а позже и к железу специальными лаками. На вещах, находящихся в постоянном употреблении, такое золотое покрытие держалось около 50 лет. Правда, этот способ золочения не был единственным. В некоторых случаях изделие покрывали слоем специального клея и посыпали тончайшим золотым порошком.
Начиная с середины прошлого столетия, после того как русский ученый Б. С. Якоби открыл процессы гальванопластики и гальваностегии, старые способы золочения почти вышли из употребления. Гальванический процесс не только производительнее, он позволяет придать золотому покрытию различные оттенки. Добавка в золотой электролит небольшого количества цианистой меди придает покрытию красный оттенок, а в сочетании с цианистым серебром - розовый: с помощью одного цианистого серебра можно получить зеленоватый оттенок золотых покрытий.
Золотые покрытия отличаются высокой стойкостью и хорошо отражают свет. В наше время золочению подвергают детали проводников в высоковольтной радиоаппаратуре, отдельные части рентгеновских аппаратов. Изготовляют отражатели с золотым покрытием для сушки инфракрасными лучами. Позолоченной была поверхность нескольких искусственных спутников Земли: позолота предохраняла спутники от коррозии и избыточного тепла.
Новейший способ нанесения золотых покрытий - катоидное распыление. Электрический разряд в разряженном газе сопровождается разрушением катода. При этом частицы катода летят с огромной скоростью и могут осаждаться не только на металле, но и на других материалах: бумаге, дереве, керамике, пластмассе. Этот способ получения тончайших золотых покрытий применяется при изготовлении фотоэлементов, специальных зеркал и в некоторых других случаях.

Краски золота

«Благородство» золота простирается лишь до определенных пределов. Иначе говоря, можно сравнительно легко получить его соединения с другими элементами. Даже в природе встречаются руды, в которых золото находится не в свободном состоянии, а в соединении с теллуром или селеном .
Промышленный процесс извлечения золота из руд - цианирование - основан на взаимодействии золота с цианидами щелочных металлов:
4Au + 8KCN + 2Н 2 О + O 2 → 4К + 4КОН.
В основе другого важного процесса - хлоринации (его используют сейчас не столько для извлечения, сколько для аффинажа золота) - лежит взаимодействие золота с хлором.
Некоторые соединения золота имеют промышленное применение. В первую очередь, это хлорное золото АuСl 3 , образующееся при растворении золота в царской водке. С помощью этого соединения получают высококачественное красное стекло - золотой рубин. Впервые такое стекло изготовлено в конце XVII столетия Иоганном Кункелем, но описание способа его получения появилось только в 1836 г. К шихте добавляют раствор хлорного золота и, изменяя последний, получают стекло с различными оттенками - от нежно-розового до темно-пурпурного. Лучше всего принимают окраску стекла, в состав которых входит окись свинца. Правда, в этом случае в шихту приходится вводить еще один компонент - осветлитель, 0,3-1,0% «белого мышьяка» As 2 0 3 . Окраска стекла соединениями золота обходится не очень дорого - для однородного интенсивного окрашивания всей массы нужно не более 0,001- 0,003% АuСl 3 .
Придать стеклу красный цвет можно также введением в шихту соединений меди или селена и кадмия. Они, безусловно, дешевле соединений золота, но работать с ними и Получать с их помощью продукцию высокого качества намного сложнее. Изготовление «медного рубина» затрудняется непостоянством окраски: оттенок сильно зависит от условий варки. Трудность получения «селенового рубина» - выгорание самого селена и серы из сернистого кадмия, входящего в состав шихты. «Золотой рубин» не теряет цвета при высокотемпературной обработке. Неоспоримое преимущество способа его получения заключается в том, что неудачную варку можно исправить последующей переплавкой. Как окрашивающее вещество хлорное золото используется также при рисовании по стеклу и фарфору. Кроме того, оно с давних пор служит тонирующим реагентом в фотографии. «Вираж-фиксаж с золотом» придает фотоотпечаткам черно-фиолетовый, коричневый или пурпурно-фиолетовый оттенки. Для этих же целей иногда используют и другое соединение золота - хлораурат натрия NaAuCl 4 .


Золото в медицине

Первые попытки применять золото в медицинских целях относятся еще ко временам алхимии, но они были немногим успешнее поисков философского камня. В XVI в. Парацельс пытался использовать препараты золота для лечения некоторых болезней, в частности сифилиса. «Не превращение металлов в золото должно быть целью химии, а приготовление лекарств»,- писал он.
Значительно позднее соединения, содержащие золото, были предложены в качестве лекарства против туберкулеза. Было бы неверным считать, что это предложение лишено разумных оснований: in vitro, т. е. вне организма, «в пробирке», эти соли губительно действуют на туберкулезную палочку, но для эффективной борьбы с болезнью нужна довольно высокая концентрация этих солей. В наши дни соли золота имеют значение для борьбы с туберкулезом лишь постольку, поскольку они повышают сопротивляемость заболеванию.
Выяснено также, что хлорное золото при концентрации 1: 30 000 начинает тормозить спиртовое брожение, с повышением концентрации до 1: 3900 -уже значительно угнетает его, а при концентрации 1: 200 - полностью останавливает.
Более эффективным медицинским средством оказался тиосульфат золота и натрия AuNaS 2 0 3 , который успешно применяется для лечения трудноизлечимого кожного заболевания - эритематозной волчанки. В медицинской практике стали применять и органические соединения золота, прежде всего кризолган и трифал.
Кризолган одно время широко применяли в Европе для борьбы с туберкулезом, а трифал, менее токсичный и более эффективный, чем тиосульфат золота и натрия,- как лекарство от эритематозной волчанки. В Советском Союзе был синтезирован высокоактивный препарат - кризанол (Au-S-СН 2 -СНОН-CH 2 S0 3) 2 Ca для лечения волчанки, туберкулеза, проказы.
После открытия радиоактивных изотопов золота его роль в медицине заметно возросла. Коллоидные частицы изотопов используют для лечения злокачественных опухолей. Эти частицы физиологически инертны, и потому их не обязательно как можно скорее выводить из организма. Введенные в отдельные области опухоли, они облучают только пораженные места. При помощи радиоактивного золота удается излечивать некоторые формы рака. Создан специальный «радиоактивный пистолет», в обойме которого 15 стерженьков из радиоактивного золота с периодом полураспада в 2,7 суток. Практика показала, что лечение «радиоактивными иголками» дает возможность ликвидировать поверхностно расположенную опухоль молочной железы уже на 25-й день.

Золотой катализ

Радиоактивное золото нашло применение не только в медицине. В последние годы появились сообщения о возможности заменять им платиновые катализаторы нескольких важных нефтехимических и химических процессов.

Особенно интересны перспективы использования каталитических свойств золота в двигателях сверхскоростных самолетов. Известно, что выше 80 км в атмосфере содержится довольно много атомарного кислорода. Объединение отдельных атомов кислорода в молекулу 0 2 сопровождается выделением большого количества тепла. Золото каталитически ускоряет этот процесс.

Трудно представить себе сверхскоростной самолет, работающий практически без горючего, но теоретически такая конструкция возможна. Двигатель будет работать за счет энергии, выделяющейся при реакции димеризации атомарного кислорода. Поднявшись на высоту 80 км (т. е. значительно превысив потолок современных самолетов), пилот включит кислороднокаталитический двигатель, в котором атмосферный кислород будет контактировать с катализатором.

Конечно, пока трудно предугадать, какие характеристики будет иметь такой двигатель, но сама по себе идея очень интересна и, видимо, не бесплодна. На страницах зарубежных научных журналов обсуждались возможные конструкции каталитической камеры, доказывалась даже нецелесообразность применения мелкодисперсного катализатора. Все это свидетельствует о серьезности намерений. Может быть, подобные двигатели станут применять не на самолетах, а на ракетах, а может быть, дальнейшие исследования похоронят эту идею как неосуществимую. Но этот факт, как и все, о чем рассказывалось выше, показывает, что пришла пора отказаться от установившегося взгляда на золото как на бесполезный для техники металл.

НА ЗОЛОТОЙ ПОДЛОЖКЕ. При ядерном синтезе менделевия мишенью служила золотая фольга, на которую электрохимическим путем было нанесено ничтожное количество (всего около миллиарда атомов) эйнштейния. Золотые подложки для ядерных мишеней были использованы и при синтезе других трансурановых элементов.

СПУТНИКИ ЗОЛОТА. Самородки редко бывают чисто золотыми. Обычно в них имеется довольно много меди или серебра. Кроме того, в самородном золоте иногда содержится теллур.

ЗОЛОТО ОКИСЛЯЕТСЯ. При температуре выше 100°С на поверхности золота образуется окисная пленка. Она не исчезает и при охлаждении; при 20°С толщина пленки равна примерно 30 А°.

ЕЩЕ О ЗОЛОТЫХ КРАСКАХ. В конце прошлого века химикам впервые удалось получить коллоидные растворы золота. Цвет растворов оказался фиолетовым. А в 1905 г., действуя спиртом на слабые растворы хлористого золота, получили коллоидные растворы золота синею и красного цвета. Цвет раствора зависит от размера коллоидных частиц.

ЗОЛОТО В ПРОИЗВОДСТВЕ ВОЛОКНА. Нити искусственного и синтетического волокна получают в устройствах, называемых фильерами. Материал фильер должен быть устойчивым к агрессивной среде прядильного раствора и достаточно прочным. В производстве нитрона применяют фильеры из платины, в которую добавлено золото. Добавкой золота достигаются две цели: фильеры становятся дешевле (ибо платина дороже золота) и прочнее. И тот и другой металл в чистом виде мягкие, однако в сплаве они представляют собой материал не только повышенной прочности, но даже пружинящий.

ЗОЛОТАЯ ПУЛЯ. Президент республики был сражен выстрелом. Убийца получил обусловленное вознаграждение от пославших его. Доказательством того, что именно он выполнил «поручение», должно было стать газетное сообщение о том, что пуля, сразившая президента, была золотой. Это сюжет известного фильма одноименного названия. Однако золотые пули, оказывается, использовались и ранее в менее драматической обстановке. В первой половине прошлого века купец Шелковников ехал из Иркутска в Якутск. Из разговоров на стоянке Крестовая он узнал, что тунгусы (эвенки), промышляющие зверя и птицу, покупают порох в фактории, а свинец добывают сами. Оказывается, по руслу речки Тонгуда можно набрать много «мягких желтых камней», которые легко округлить, а но весу они такие же тяжелые, как и свинец. Купец понял, что речь идет о россыпном золоте, и вскоре в верховьях этой речки были организованы золотые прииски.

ЗОЛОТОЕ СИТО. Известно, что золото можно прокатать в тончайшие, почти прозрачные листки, голубоватые на просвет. При этом в металле образуются мельчайшие поры, которые могли бы служить молекулярным ситом. Американцы пытались сделать установку для разделения изотопов урана на золотых молекулярных ситах, превратив для этого несколько тонн драгоценного металла в тончайшую фольгу, однако дальше дело не пошло. То ли сита оказались недостаточно эффективными, то ли была разработана более дешевая технология, то ли просто золота пожалели - так или иначе, но фольгу опять переплавили в слитки.

ПРОТИВ ВОДОРОДНОЙ ХРУПКОСТИ. При контакте стали с водородом, особенно в момент выделения последнего, газ, «внедряясь» в металл, делает его хрупким. Это явление так и называют водородной хрупкостью. Чтобы устранить его, детали аппаратов, а иногда и аппараты целиком покрывают тонким слоем золота. Это, конечно, дорого, но приходится идти на такую меру, поскольку от водорода золото защищает сталь лучше, чем любое другое покрытие, а ущерб от водородной хрупкости достаточно велик...

ИСТОРИЯ С ДУЭЛЯНТОМ. Известный изобретатель Эрнст Вернер Сименс в молодости дрался на дуэли, за что был водворен в тюрьму на несколько лет. Он сумел добиться разрешения организовать в своей камере лабораторию и продолжал в тюрьме опыты по гальванотехнике. 15 частности, он разрабатывал способ золочения не драгоценных металлов. Когда эта задача была уже близка к разрешению, пришло помилование. Но, вместо того чтобы радоваться полученной наконец свободе, узник подал просьбу оставить его еще на некоторое время в тюрьме - чтобы он мог закончить опыты. Власти не откликнулись на просьбу Сименса и выставили его из «обжитого помещения». Пришлось ему оборудовать лабораторию заново и уже на воле заканчивать начатое в тюрьме. Сименс получил-таки патент па способ золочения, но произошло это позже, чем могло быть.

ЗОЛОТО В СОКЕ БЕРЕЗ. Золото не относится к числу жизненно важных элементов. Более того, роль его в живой природе весьма скромная. Однако в 1977 г. в журнале «Доклады Академии наук СССР» (т. 234, № I) появилось сообщение о том, что в соке берез, растущих над золотоносными месторождениями, наблюдается повышенное содержание золота, как, впрочем, и цинка, если под почвой скрыты месторождения этого отнюдь не благородного металла.

ПРОТИВОПОКАЗАНИЯ. Казалось бы, медицинские препараты золота, элемента химически пассивного, должны быть препаратами без противопоказаний или почти без противопоказаний. Однако это не так. Препараты золота нередко вызывают побочные явления - повышение температуры, раздражение почек и кишечника. При тяжелых формах туберкулеза, сахарном диабете, заболеваниях крови, сердечно-сосудистой системы, печени и некоторых других органов применение препаратов с золотом может принести больше вреда, чем пользы.

Золото… Желтый металл, простой химический элемент с атомным номером 79. Предмет вожделения людей во все времена, мерило ценности, символ богатства и власти. Кровавый металл, порождение дьявола. Сколько человеческих жизней было погублено ради обладания этим металлом!? И сколько еще будет погублено?

В отличие от железа или, например, от алюминия, золота на Земле очень мало. За всю свою историю человечество добыло золота столько, сколько оно добывает железа за один день. Но откуда же этот металл появился на Земле?

Считается, что Солнечная система образовалась из остатков взорвавшейся когда-то в глубокой древности сверхновой. В недрах той древней звезды происходил синтез химических элементов тяжелее водорода и гелия. Но в недрах звезд не могут синтезироваться элементы тяжелее железа, и стало быть, золото не могло образоваться в результате термоядерных реакций в звездах. Так, откуда же этот металл вообще появился во Вселенной?

Похоже, астрономы теперь могут ответить на этот вопрос. Золото не может рождаться в недрах звезд. Но оно может образоваться в результате грандиозных космических катастроф, которые ученые буднично называют гамма-всплесками (ГВ).

Астрономы пристально наблюдали за одним из таких гамма-всплесков. Данные наблюдений дают достаточно серьезные основания считать, что эта мощная вспышка гамма-излучения произведена столкновением двух нейтронных звезд – мертвых ядер звезд, погибших в сверхновом взрыве. Кроме того, уникальное свечение, сохранявшееся на месте ГВ в течение нескольких дней, указывает на то, что во время этой катастрофы образовалось значительное количество тяжелых элементов, в том числе – золото.

«По нашим оценкам, количество золота, образовавшегося и выброшенного в пространство во время слияния двух нейтронных звезд, может сотавить более 10 лунных масс»,– сказал ведущий автор исследования Эдо Бергер из Гарвард-Смитсоновского астрофизического центра (CfA) во время пресс-конференции CfA в Кембридже, штат Массачусетс.

Гамма-всплеск (ГВ) – это вспышка гамма-излучения от чрезвычайно энергичного взрыва. Большинство ГВ обнаруживаются в очень отдаленных областях Вселенной. Бергер и его коллеги изучали объект GRB 130603B, находящийся на расстоянии 3,9 миллиардов световых лет. Это один из самых близких ГВ из замеченных до настоящего времени.

ГВ бывают двух видов – длинные и короткие, в зависимости от того, сколько длится вспышка гамма-лучей. Длительность вспышки GRB 130603B, зафиксированной спутником НАСА «Свифт», составила менее двух десятых секунды.

Хотя само гамма-излучение исчезло быстро, GRB 130603B продолжал светить в инфракрасных лучах. Яркость и поведение этого света не соответствовали типичному послесвечению, которое возникает при бомбардировке ускоренными частицами окружающего вещества. Свечение GRB 130603B вело себя так, как будто оно исходит из распадающихся радиоактивных элементов. Вещество, богатое нейтронами, выброшенное при столкновении нейтронных звезд, может превратиться в тяжелые радиоактивные элементы. Радиоактивный распад таких элементов порождает инфракрасное излучение, характерное для GRB 130603B. Именно это и наблюдали астрономы.

По вычислениям группы, во время взрыва было выброшено вещества с массой около одной сотой солнечной. И часть этого вещества была золотой. Примерно оценив количество золота, образовавшегося во время этого ГВ, и число таких взрывов, произошедших за всю историю Вселенной, астрономы пришли к предположению, что все золото во Вселенной, в том числе и на Земле, возможно, было образовано во время таких гамма-всплесков.

Вот еще одна интересная, но ужасно спорная версия:

В процессе формирования Земли расплавленное железо спускалось вниз к её центру, чтобы составить её ядро, увлекая с собой большинство драгоценных металлов планеты, таких как золото и платина. Вообще, драгметаллов в ядре хватит на то, чтобы покрыть их слоем четырёхметровой толщины всю поверхность Земли.

Перемещение золота в ядро должно было лишить внешнюю часть Земли этого сокровища. Однако распространённость благородных металлов в силикатной мантии Земли превышает расчётные величины в десятки и тысячи раз. Уже обсуждалась идея о том, что это свалившееся на голову сверхизобилие имеет своей причиной катастрофический метеоритный ливень, который настиг Землю после образования её ядра. Вся масса метеоритного золота, таким образом, вошла в мантию обособленно и не пропала глубоко внутри.

Для проверки этой теории доктор Маттиас Виллболд и профессор Тим Эллиот из Бристольской изотопной группы Школы наук о Земле подвергли анализу собранные в Гренландии профессором Оксфордского университета Стивеном Мурбатом породы, возраст которых насчитывает около 4 миллиардов лет. Эти древние камни дают уникальную картину состава нашей планеты вскоре после формирования ядра, но до предполагаемой метеоритной бомбардировки.

Затем ученые начали исследовать содержание вольфрама-182 и в метеоритах, которые называют хондритами, – это один из главных строительных материалов твердой части Солнечной системы. На Земле нестабильный гафний-182 распадается cобразованием вольфрама-182. А вот в космосе из-за космических лучей этот процесс не происходит. В результате стало ясно, что образцы древних горных пород содержат на 13% больше вольфрама-182 по сравнению с более молодыми горными породами. Это дает геологам основание утверждать, что когда Земля уже имела твердую кору, на нее обрушилось около 1 миллиона триллионов (10 в 18-й степени) тонн астероидного и метеоритного вещества, которое имело более низкое содержаниевольфрама-182, но при этом гораздо большее, чем в земной коре, содержание тяжелых элементов, в частности золота.

Будучи весьма редким элементом (на килограмм породы приходится всего около 0,1 миллиграмма вольфрама), подобно золоту и другим драгоценным металлам он должен был войти в ядро в момент его формирования. Как и большинство других элементов, вольфрам подразделяется на несколько изотопов – атомов со сходными химическими свойствами, но слегка различающимися массами. По изотопам можно с уверенностью судить о происхождении вещества, а смешивание метеоритов с Землей должно было оставить характерные следы в составе её изотопов вольфрама.

Доктор Виллболд заметил в современной породе сокращение количества изотопа вольфрама-182 на 15 миллионных долей по сравнению с гренландской.

Это небольшое, но многозначительное изменение превосходно согласуется с тем, что и требовалось доказать – что избыток доступного золота на Земле является положительным побочным эффектом метеоритной бомбардировки.

Доктор Виллболд говорит: «Извлечение вольфрама из каменных образцов и анализ с необходимой точностью его изотопного состава были крайне сложной задачей, принимая во внимание небольшое количество имеющегося в камнях вольфрама. Фактически, мы стали первой в мире лабораторией, которая успешно выполнила измерения такого уровня».

Упавшие метеориты смешались с земной мантией в ходе гигантских конвекционных процессов. Задачей-максимум на будущее является выяснение продолжительности этого перемешивания. Впоследствии геологические процессы сформировали континенты и привели к концентрации драгоценных металлов (а также вольфрама) в залежах руды, которая добывается в наши дни.

Доктор Виллболд продолжает: «Результаты нашей работы показывают, что большая часть драгоценных металлов, на которых основывается наша экономика и многие ключевые производственные процессы, была занесена на нашу планету по счастливой случайности, когда Землю накрыло где-то 20 квинтиллионами тонн астероидного вещества».

Таким образом, мы обязаны своими золотыми запасами настоящему потоку ценных элементов, которые оказались на поверхности планеты благодаря массированной астероидной «бомбардировке». Потом в ходе развития Земли в течение последних миллиардов лет золото вступило в круговорот пород, появляясь на ее поверхности и вновь скрываясь в глубинах верхней мантии.

Но теперь ему путь к ядру закрыт, и большое количество этого золота просто обречено оказаться в наших руках.

Слияние нейтронных звезд

И еще мнение другого ученого:

Происхождение золота оставалось до конца невыясненным, поскольку, в отличие от более легких элементов, таких как углерод или железо, оно не может образовываться непосредственно внутри звезды, — признался один из исследователей центра Эдо Бергер.

Ученый пришел к этому выводу, наблюдая за гамма-всплесками — масштабными космическими выбросами радиоактивной энергии, вызванными столкновением двух нейтронных звезд. Гамма-всплеск был замечен космическим аппаратом НАСА Swift и длился всего двух десятых секунды. А после взрыва осталось свечение, которое постепенно исчезало. Свечение же при столкновении таких небесных тел свидетельствует о выбросе большого количества тяжелых элементов, утверждают специалисты. А доказательством того, что после взрыва образовались тяжёлые элементы, можно считать инфракрасный свет в их спектре.

Дело в том, что нейтронно-богатые вещества, выброшенные при коллапсе нейтронных звезд, могут генерировать элементы, претерпевающие радиоактивный распад, при этом испуская свечение преимущественно в инфракрасном диапазоне, — объяснял Бергер. — И мы полагаем, что при гамма-всплеске выбрасывается примерно одна сотая доля материала солнечной массы, в том числе золото. Причем, количество золота, произведенного и выброшенного во время слияния двух нейтронных звезд, может быть сравнимо с массой 10 Лун. А стоимость такого количества драгоценного металла равнялась бы 10 октильонам долларов — это 100 трлн в квадрате .

Для справки, октильон — это миллион септиллионов или миллион в седьмой степени; число, равное 1042 и записываемое в десятичной системе как единица с 42 нулями.

Также сегодня учеными установлен тот факт, что практически все золото (и прочие тяжелые элементы) на Земле — космического происхождения. Золото, оказывается, попало на Землю в результате астероидной бомбардировки, которая произошла в далекие времена после застывания коры нашей планеты.

Практически все тяжелые металлов «утонули» в мантии Земли на самом раннем этапе формирования нашей планеты, именно они образовали твердое металлическое ядро в центре Земли.

Алхимики XX века

Еще в 1940 году американские физики А. Шерр и К. Т. Бэйнбридж из Гарвардского университета начали облучать нейтронами соседние с золотом элементы – ртуть и платину. И вполне ожидаемо, облучив ртуть, получили изотопы золота с массовыми числами 198, 199 и 200. Их отличие от естественного природного Au-197 в том, что изотопы неустойчивы и, испуская бета-лучи, максимум за несколько дней опять превращаются в ртуть с массовыми числами 198,199 и200.

Но все равно это было здорово: впервые человек смог самостоятельно создавать нужные элементы. Вскоре стало понятно, как вообще можно получить настоящее, стабильное золото-197. Это можно сделать, используя только изотоп ртути-196. Этот изотоп достаточно редок – его содержание в обычной ртути с массовым числом 200 составляет около 0,15%. Его надо бомбардировать нейтронами, чтобы получить малоустойчивую ртуть-197, которая, захватив электрон, и превратится в стабильное золото.

Однако расчеты показали, что если взять 50 кг природной ртути, то в ней будет всего 74 грамма ртути-196. Для трансмутации в золото реактор может дать поток нейтронов 10 в 15-й степени нейтронов на кв. см в секунду. С учетом того, что в 74 г ртути-196 содержится около 2,7 на 10 в 23-й степени атомов, для полной трансмутации ртути в золото потребовалось бы четыре с половиной года. Это синтетические золото стоит бесконечно дороже золота из земли. Но это означало, что для образования золота в космосе тоже нужны гигантские потоки нейтронов. И взрыв двух нейтронных звезд как раз все объяснял.

И еще подробности про золото:

Немецкие ученые подсчитали, что для того, чтобы на Землю был занесен присутствующий сегодня объем драгметаллов, понадобились всего 160 металлических астероидов, диаметром около 20км каждый. Специалисты отмечают, что геологический анализ различных благородных металлов показывает, что все они появились на нашей планете примерно в одно и то же время, однако на самой Земле не было и нет условий для их естественного происхождения. Именно это натолкнуло специалистов на космическую теорию появления благородных металлов на планете.

Слово «gold», по мнению лингвистов, произошло от индо-европейского термина «желтый» как отражение наиболее заметной характеристики этого металла. Этот факт находит свое подтверждение в том, что произношение слова «gold» на разных языках похоже, например Gold (по-английски), Gold (по-немецки), Guld (по-датски), Gulden (по-голландски), Gull (по-норвежски), Kulta (по-фински).

Золото в земных недрах


В ядре нашей планеты содержится в 5 раз больше золота, чем во всех остальных породах, доступных для разработки, вместе взятых. Если бы все золото ядра Земли вылилось на поверхность, то покрыло бы всю планету слоем толщиной полметра. Интересно, что в каждом литре воды всех рек, морей и океанов растворено около 0,02 миллиграмма золота.

Определено, что за все время добычи благородного металла из недр было извлечено около 145 тысяч тонн (по данным других источников – около 200 тысяч тонн). Производство золота растет из года в год, но основной рост пришелся на конец 1970-х годов.

Чистота золота определяется различными путями. Carat (в США и Германии пишется «Karat») первоначально был единицей массы на основе семян рожкового дерева «carob tree» (созвучно со словом «карат»), используемого древними торговцами Среднего Востока. Карат сегодня в основном используется при измерении веса драгоценных камней (1 карат = 0,2 грамма). Чистоту золота также можно измерить в каратах. Эта традиция восходит к древним временам, когда карат на Ближнем Востоке стал мерилом чистоты золотых сплавов. Британский карат золота – неметрическая единица оценки содержания золота в сплавах, равная 1/24 массы сплава. Чистое золото соответствует 24 каратам. Чистота золота сегодня измеряется также и понятием химической чистоты, то есть тысячных долях чистого металла в массе сплава. Так, 18 карат – это 18/24 и в пересчете на тысячные доли соответствует 750-й пробе.

Добыча золота


В результате природного концентрирования примерно лишь 0,1% всего золота, содержащегося в земной коре, доступно, хотя бы теоретически, для добычи, однако благодаря тому, что золото встречается в самородном виде, ярко блестит и легко заметно, оно стало первым металлом, с которым познакомился человек. Но природные самородки редки, поэтому самый древний способ добычи редкого металла, основанный на большой плотности золота, – промывание золотоносных песков. «Добыча промывного золота требует только механических средств, а потому немудрено, что золото известно было даже дикарям и в самые древние исторические времена» (Д.И.Менделеев).

Но богатых золотых россыпей почти не осталось, и уже в начале XX века 90% всего золота добывали из руд. Сейчас многие золотые россыпи практически исчерпаны, поэтому добывают, в основном, рудное золото, добыча которого во многом механизирована, но производство остается трудным, так как часто находится глубоко под землей. В последние десятилетия постоянно росла доля более рентабельных открытых разработок. Месторождение экономически выгодно разрабатывать, если в тонне руды содержится всего 2-3г золота, а при содержании более 10 г/т оно считается богатым. Существенно, что затраты на поиск и разведку новых золотых месторождений составляют от 50 до 80% всех затрат на геологоразведочные работы.

Сейчас крупнейшим поставщиком золота на мировой рынок является Южная Африка, где шахты достигли уже 4-километровой глубины. В ЮАР находится самый большой в мире рудник Вааль-Рифс в Клексдорпе. ЮАР – единственное государство, где золото – главный продукт производства. Там его добывают на 36 крупных рудниках, на которых трудятся сотни тысяч человек.

В России добыча золота ведется из рудных и россыпных месторождений. О начале его добычи мнения исследователей расходятся. По-видимому, первое отечественное золото было добыто в 1704 году из Нерчинских руд вместе с серебром. В последующие десятилетия на Московском монетном дворе золото выделяли из серебра, которое содержало немного золота в виде примеси (около 0,4%). Так, в 1743-1744гг. «из золота, обретающегося в серебре, выплавленном на Нерчинских заводах», было изготовлено 2820 червонцев с изображением Елизаветы Петровны.

Первую в России золотую россыпь обнаружил весной 1724 года крестьянин Ерофей Марков в районе Екатеринбурга. Ее эксплуатация началась только в 1748 года. Добыча уральского золота медленно, но неуклонно расширялась. В начале XIX века были открыты новые месторождения золота в Сибири. Открытие (в 1840-е гг.) Енисейского месторождения вывело Россию на первое место в мире по добыче золота, но еще до этого местные охотники-эвенки делали из золотых самородков пули для охоты. В концу XIX века Россия добывала в год около 40т золота, из них 93% – россыпного. Всего же в России до 1917 год было добыто, по официальным данным, 2754т золота, но по оценкам специалистов – около 3000т, причем максимум пришелся на 1913 год (49т), когда золотой запас достиг 1684т.

С открытием богатых золотоносных районов в США (Калифорния, 1848г.; Колорадо, 1858г.; Невада, 1859г.), Австралии (1851г.), Южной Африке (1884г.), Россия утратила свое первенство в добыче золота, несмотря на то, что были введены в эксплуатацию новые месторождения, главным образом в Восточной Сибири.
Добыча золота велась в России полукустарным способом, разрабатывались преимущественно россыпные месторождения. Свыше половины золотых приисков находилось в руках иностранных монополий. В настоящее время доля добычи из россыпей постепенно снижается, составляя к 2007 году немного более 50 тонн. Менее 100 тонн добывается из рудных месторождений. Окончательная переработка золота ведется на аффинажных заводах, ведущим из которых является Красноярский завод цветных металлов. На его долю приходится аффинаж (очистка от примесей, получение металла пробы 99,99%) около 50% добываемого золота и большая часть платины и палладия, добываемых в России.

. А например вы знаете Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -